Reliable Glucose Monitoring by ex-vivo Blood Micro-dialysis and Infrared Spectrometry for Patients in Critical Care

Sven Delbeck, BSc; Janpeter Budde, MSc; Thorsten Vahlsing, Dipl.-Ing.; Dieter Ihrig, PhD; H. Michael Heise, PhD
South-Westphalia University of Applied Sciences, Interdisciplinary Centre of Life Sciences, Frauenstuhlweg 31, D-58644 Iserlohn, Germany

Background
Blood glucose monitoring has been realised by biosensors in combination with micro-dialysis, using either intravascularly or subcutaneously implanted catheters. Another alternative is ex-vivo micro-dialysis of continuously sampled heparinized whole blood available from ICU patients. However, a drawback are variable recovery rates, which can be observed for all devices. Infrared spectrometry has been suggested for multi-analyte detection and quantification, since also other clinically relevant analytes besides glucose can be simultaneously determined and that are important, e.g., for patients under intensive care [1–3].

Experimental

Fig. 1 Schematics of the fluidics setup for heparinized whole blood dialysis and dialysate analysis (left: scheme of flow-through μ-dialyzer)

Fig. 2 Glucose concentration profiles of a type 1 diabetic subject monitored spectrometrically, using an extracorporeal whole blood dialysis (A) and dialysis recovery rates using the perfusate marker of acetate (B).

Dialysates were measured under stable flow-rates, and simultaneous multi-component analysis was carried out by infrared spectrometry. Extensive ex-vivo measurements confirmed the theoretical nonlinear relationship between the relative dialysate marker concentration

\[R_{\text{analyte,perf}} / R_{\text{analyte,sample}} = 1 - \left(\frac{C_{\text{sample}}}{C_{\text{perfusate}}} \right) \]

and recovery rates of the analyte of interest when using acetate, while for mannitol a nearly linear dependency exists. Exemplary results are shown in Figs. 3A and B.

Conclusions

The combination of micro-dialysis with infrared spectrometry provides a calibration-free assay for accurate continuous glucose monitoring, as reference spectra of dialysate components can be a priori allocated. Using such a system, blood glucose concentration values can be reliably and continuously monitored. These measurements can be considered as the gold standard in glycemic control of critically ill patients.

Acknowledgements
We are grateful for the previous support by the European Commission with the CLINICIP project (contract no. 506965, 6th Framework Programme). Financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes NRW and the Bundesministerium für Bildung und Forschung (contract no. VIP-03V0434) is acknowledged. We also thank Joanneum Research and the Medical University, Graz, Austria for support and collaboration, in particular, Drs. F. Feichtner, M. Ellmerer and J.K. Mader.

References