Korrekturliste zum Studienbuch "Grundlagen der Elektrotechnik 1"

In der aktuellen Auflage wurden in einigen Büchern durch ein Konvertierungsproblem teilweise die Zeichen π durch \neq und μ durch ∞ ersetzt. Da diese Fehler nicht in jedem Buch und auch nicht in jeder Formel auftreten, folgt hier eine Auflistung der betroffenen Stellen.

Seite, Zeile	FALSCH	RICHTIG
175, 11	$\vec{B} = \infty \cdot \vec{H}$	$\vec{B} = \mu \cdot \vec{H}$
175, 15	$\left[\infty \right] = \left[\frac{B}{H} \right] = \frac{\text{Vs}}{\text{Am}}$	$[\mu] = \left[\frac{B}{H}\right] = \frac{\text{Vs}}{\text{Am}}$
175, 19		$\mu_0 = 4 \cdot \pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m} = 1,2566 \cdot 10^{-6} \frac{V \cdot s}{A \cdot m}$
176, 2	$ \alpha = \alpha_{\mathbf{f}} \cdot \alpha_{\mathbf{r}} $	$\mu = \mu_0 \cdot \mu_r$
185, 14	$V_{\mathrm{Fe}} = H_{\mathrm{Fe}} \cdot l_{\mathrm{Fe}} = \frac{B_{\mathrm{Fe}}}{\sigma_{\mathrm{r,Fe}} \cdot \sigma_{\mathrm{f}}} \cdot l_{\mathrm{Fe}}$	$V_{\text{Fe}} = H_{\text{Fe}} \cdot l_{\text{Fe}} = \frac{B_{\text{Fe}}}{\mu_{\text{r,Fe}} \cdot \mu_0} \cdot l_{\text{Fe}}$
190, 13	$R_{\scriptscriptstyle m} = \frac{1}{\infty} \frac{l}{A}$	$R_m = \frac{1}{\mu} \frac{l}{A}$
192, 2		$\mu_1 \cdot H_{n1} = \mu_2 \cdot H_{n2}$
192, 3	$\frac{B_{t1}}{\alpha_1} = \frac{B_{t2}}{\alpha_2}$	$\frac{B_{t1}}{\mu_1} = \frac{B_{t2}}{\mu_2}$
209, 8	$B = \propto_0 \cdot \propto_{\tilde{\mathbf{r}}} \cdot H$	$B = \mu_0 \cdot \mu_{\rm r} \cdot H$
209, 11	$u = N \cdot \frac{d(B \cdot A)}{dt} = N \cdot A \cdot \infty_0 \cdot \infty_{\bar{\mathbf{r}}} \cdot \frac{N}{l} \cdot \frac{di}{dt} = L \cdot \frac{di}{dt}$	$u = N \cdot \frac{d(B \cdot A)}{dt} = N \cdot A \cdot \mu_0 \cdot \mu_r \cdot \frac{N}{l} \cdot \frac{di}{dt} = L \cdot \frac{di}{dt}$
209, 15	$L = N^2 \cdot \alpha_0 \cdot \alpha_{\rm f} \cdot \frac{A}{l}$	$L = N^2 \cdot \mu_0 \cdot \mu_r \cdot \frac{A}{l}$
225,	$w = w_{\text{spez}} = \int_0^{B_1} \frac{B}{\alpha_{\text{r}} \cdot \alpha_{\text{f}}} \cdot dB = \frac{1}{\alpha_{\text{r}} \cdot \alpha_{\text{f}}} \cdot \int_0^{B_1} B \cdot dB = \frac{B_1^2}{2 \cdot \alpha_{\text{r}} \cdot \alpha_{\text{f}}}$	$w = w_{\text{spez}} = \int_0^{B_1} \frac{B}{\mu_{\text{r}} \cdot \mu_0} \cdot dB = \frac{1}{\mu_{\text{r}} \cdot \mu_0} \cdot \int_0^{B_1} B \cdot dB = \frac{B_1^2}{2 \cdot \mu_{\text{r}} \cdot \mu_0}$
225, 7	$ec{B} = arphi_{ ext{r}} \cdot arphi_{ ext{f}} \cdot ec{H}$	$\vec{B} = \mu_{\rm r} \cdot \mu_0 \cdot \vec{H}$
225, 11	$w = w_{\text{spez}} = \frac{B^2}{2 \cdot \alpha_{\text{r}} \cdot \alpha_{\text{f}}} = \frac{1}{2} \cdot \alpha_{\text{r}} \cdot \alpha_{\text{f}} \cdot H^2 = \frac{1}{2} \cdot H \cdot B$	$w = w_{\text{spez}} = \frac{B^2}{2 \cdot \mu_{\text{r}} \cdot \mu_0} = \frac{1}{2} \cdot \mu_{\text{r}} \cdot \mu_0 \cdot H^2 = \frac{1}{2} \cdot H \cdot B$
229,	$B_1 = \alpha_0 \cdot H_1 = \frac{\alpha_0 \cdot I_1}{2 \cdot \pi \cdot r}$	$B_1 = \mu_0 \cdot H_1 = \frac{\mu_0 \cdot I_1}{2 \cdot \pi \cdot r}$
229,	$F = \alpha_0 \cdot \frac{l}{2 \cdot \pi \cdot r} \cdot I_1 \cdot I_2$	$F = \mu_0 \cdot \frac{l}{2 \cdot \pi \cdot r} \cdot I_1 \cdot I_2$

230,	$W = \frac{1}{2} \cdot A \cdot l \cdot \frac{B^2}{\alpha_0}$	$W = \frac{1}{2} \cdot A \cdot l \cdot \frac{B^2}{\mu_0}$
233,	$w = \frac{B^2}{2 \cdot \alpha_0} = 579, 0 \frac{J}{m^3} = 579, 0 \cdot 10^3 \frac{N}{m^2}$	$w = \frac{B^2}{2 \cdot \mu_0} = 579, 0 \frac{J}{m^3} = 579, 0 \cdot 10^3 \frac{N}{m^2}$
301, 13	$\alpha_0 = 1,2566 \cdot 10^{-6} \text{ Vs/Am}$	$\mu_0 = 1,2566 \cdot 10^{-6} \text{ Vs/Am}$
308, 12	$ \alpha_{r,Fe,1} = 2300; \alpha_{r,Fe,2} = 1500; $ Permeabilität des Vakuums: $\mu_0 = 1,2566 \cdot 10^{-6} \text{ Vs/Am}$	$\mu_{\rm r,Fe,1} = 2300; \ \mu_{\rm r,Fe,2} = 1500;$ Permeabilität des Vakuums: $\mu_0 = 1,2566 \cdot 10^{-6} \ {\rm Vs/Am}$
343,	$w_{\rm L} = \frac{B_{\rm L}^2}{2} = 526222 \frac{\rm J}{\rm m}^3$	$w_{\rm L} = \frac{B_{\rm L}^2}{2\mu_0} = 526222 \frac{\rm J}{\rm m}^{-3}$
343, 8	$D = \hat{\mathbf{a}}_{r} \cdot \hat{\mathbf{a}}_{0} \cdot E = 5,555 \cdot 10^{-6} \frac{\text{As}}{\text{m}^{2}}$	$D = \varepsilon_{\rm r} \cdot \varepsilon_0 \cdot E = 5,555 \cdot 10^{-6} \frac{\text{As}}{\text{m}^2}$
343, 17	$a_{r}^{**} = 1$	$\varepsilon_{\rm r}^{**}=1$
344,	$E^{**} = \frac{1}{\mathring{a}_0} \cdot D^{**} = 627450 \frac{V}{m}$	$E^{**} = \frac{1}{\varepsilon_0} \cdot D^{**} = 627450 \frac{V}{m}$
348,	$\frac{1}{2} \cdot B \cdot H = \frac{1}{2} \cdot \infty \cdot H^2 = \frac{1}{2} \cdot \frac{B^2}{\infty} = w = 2100 \frac{J}{m^3}$	$\frac{1}{2} \cdot B \cdot H = \frac{1}{2} \cdot \mu \cdot H^2 = \frac{1}{2} \cdot \frac{B^2}{\mu} = w = 2100 \frac{J}{m^3}$
348, 5		$\mu_{\rm r,Fe} = \frac{B}{\mu_0 \cdot H} = 245$
334, 8	$H = \frac{B}{\mathbf{i}_{r} \cdot \mathbf{i}_{0}} \rightarrow H_{1} = 207, 6 \frac{A}{m}$	$H = \frac{B}{\mu_{\rm r} \cdot \mu_0} \rightarrow H_1 = 207,6 \frac{A}{\rm m}$
342, 11	$H_{\rm L} = \frac{B_{\rm L}}{i_0} = 915168 \frac{A}{m}$	$H_{\rm L} = \frac{B_{\rm L}}{\mu_0} = 915168 \frac{A}{\rm m}$
342, 12	$H_{\text{Fe}} = \frac{B_{\text{Fe}}}{\mathbf{i}_{\text{r,Fe}} \cdot \mathbf{i}_{0}} = 1077 \frac{A}{\text{m}}$	$H_{\text{Fe}} = \frac{B_{\text{Fe}}}{\mu_{\text{r,Fe}} \cdot \mu_0} = 1077 \frac{A}{\text{m}}$